Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychiatry ; 14: 1318637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283894

RESUMO

Introduction: Autism spectrum disorder (ASD) is a multifaceted developmental condition that commonly appears during early childhood. The etiology of ASD remains multifactorial and not yet fully understood. The identification of biomarkers may provide insights into the underlying mechanisms and pathophysiology of the disorder. The present study aimed to explore the causes of ASD by investigating the key biomedical markers, trace elements, and microbiota factors between children with autism spectrum disorder (ASD) and control subjects. Methods: Medline, PubMed, ProQuest, EMBASE, Cochrane Library, PsycINFO, Web of Science, and EMBSCO databases have been searched for publications from 2012 to 2023 with no language restrictions using the population, intervention, control, and outcome (PICO) approach. Keywords including "autism spectrum disorder," "oxytocin," "GABA," "Serotonin," "CRP," "IL-6," "Fe," "Zn," "Cu," and "gut microbiota" were used for the search. The Joanna Briggs Institute (JBI) critical appraisal checklist was used to assess the article quality, and a random model was used to assess the mean difference and standardized difference between ASD and the control group in all biomedical markers, trace elements, and microbiota factors. Results: From 76,217 records, 43 studies met the inclusion and exclusion criteria and were included in this meta-analysis. The pooled analyses showed that children with ASD had significantly lower levels of oxytocin (mean differences, MD = -45.691, 95% confidence interval, CI: -61.667, -29.717), iron (MD = -3.203, 95% CI: -4.891, -1.514), and zinc (MD = -6.707, 95% CI: -12.691, -0.722), lower relative abundance of Bifidobacterium (MD = -1.321, 95% CI: -2.403, -0.238) and Parabacteroides (MD = -0.081, 95% CI: -0.148, -0.013), higher levels of c-reactive protein, CRP (MD = 0.401, 95% CI: 0.036, 0.772), and GABA (MD = 0.115, 95% CI: 0.045, 0.186), and higher relative abundance of Bacteroides (MD = 1.386, 95% CI: 0.717, 2.055) and Clostridium (MD = 0.281, 95% CI: 0.035, 0.526) when compared with controls. The results of the overall analyses were stable after performing the sensitivity analyses. Additionally, no substantial publication bias was observed among the studies. Interpretation: Children with ASD have significantly higher levels of CRP and GABA, lower levels of oxytocin, iron, and zinc, lower relative abundance of Bifidobacterium and Parabacteroides, and higher relative abundance of Faecalibacterium, Bacteroides, and Clostridium when compared with controls. These results suggest that these indicators may be a potential biomarker panel for the diagnosis or determining therapeutic targets of ASD. Furthermore, large, sample-based, and randomized controlled trials are needed to confirm these results.

2.
Gen Psychiatr ; 35(1): e100685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309241

RESUMO

Background: Schizophrenia is a serious mental illness affecting approximately 20 million individuals globally. Both genetic and environmental factors contribute to the illness. If left undiagnosed and untreated, schizophrenia results in impaired social function, repeated hospital admissions, reduced quality of life and decreased life expectancy. Clinical diagnosis largely relies on subjective evidence, including self-reported experiences, and reported behavioural abnormalities followed by psychiatric evaluation. In addition, psychoses may occur along with other conditions, and the symptoms are often episodic and transient, posing a significant challenge to the precision of diagnosis. Therefore, objective, specific tests using biomarkers are urgently needed for differential diagnosis of schizophrenia in clinical practice. Aims: We aimed to provide evidence-based and consensus-based recommendations, with a summary of laboratory measurements that could potentially be used as biomarkers for schizophrenia, and to discuss directions for future research. Methods: We searched publications within the last 10 years with the following keywords: 'schizophrenia', 'gene', 'inflammation', 'neurotransmitter', 'protein marker', 'gut microbiota', 'pharmacogenomics' and 'biomarker'. A draft of the consensus was discussed and agreed on by all authors at a round table session. Results: We summarised the characteristics of candidate diagnostic markers for schizophrenia, including genetic, inflammatory, neurotransmitter, peripheral protein, pharmacogenomic and gut microbiota markers. We also proposed a novel laboratory process for diagnosing schizophrenia in clinical practice based on the evidence summarised in this paper. Conclusions: Further efforts are needed to identify schizophrenia-specific genetic and epigenetic markers for precise diagnosis, differential diagnosis and ethnicity-specific markers for the Chinese population. The development of novel laboratory techniques is making it possible to use these biomarkers clinically to diagnose disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...